Performance Based Learning and Assessment Task

Swimming Pool Dilemma

I. ASSESSSMENT TASK OVERVIEW & PURPOSE:

The student will take the knowledge volumes of three-dimensional solids and apply it to a real-life situation.

II. UNIT AUTHOR:

Sallie Shackelford, Rappahannock County High School, Rappahannock County Public Schools

III. COURSE:

Geometry

IV. CONTENT STRAND:

Geometry

V. OBJECTIVES:

Volume of 3D solids

VI. REFERENCE/RESOURCE MATERIALS:

calculators, computers

VII. PRIMARY ASSESSMENT STRATEGIES:

The student will be assessed using a scoring rubric. (See Attached)

VIII. EVALUATION CRITERIA:

Scoring rubric and benchmark of exemplary work attached

IX. INSTRUCTIONAL TIME:

One 90-minute period

Swimming Pool Dilemma

Strand

Geometry

Mathematical Objective(s)

Volume of three-dimensional solids

Related SOL G.13 The student will use formulas for surface area and volume of three-dimensional objects to solve real-world problems.

NCTM Standards

- Apply and adapt a variety of appropriate strategies to solve problems
- Communicate mathematical thinking coherently and clearly to peers, teachers, and others

Materials/Resources

Calculators (if needed for basic calculations)
Computers for research on gallon conversions

Assumption of Prior Knowledge

• Students should have discussed volume of three-dimensional objects.

Introduction: Setting Up the Mathematical Task

- Abby and Tom each want to put a swimming pool in their back yards. They both have requested you and your partner, the pool designers, to design a pool for each of them that will hold very close to the same amount of water. However, they do not want their pools to be the same shape. You must provide both Abby and Tom with the name of the shape of their pool, a sketch of their pool, the dimensions, and the amount of water their pool will hold (in gallons).
- In this task, you will apply the knowledge learned about volume of three-dimensional solids to a real-world situation dealing with swimming pools.

Student Exploration

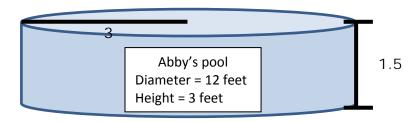
Student/Teacher Actions:

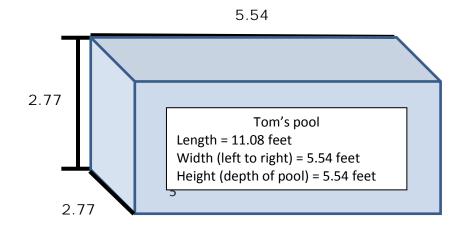
- Students will individually analyze the scenario given. Then, they will pair up with another student in the class. Each pair of students will discuss with each other strategies to solve the given problem.
- The teacher should check on each pair of students to make sure they are on task.

- If any students are struggling, the teacher should ask the students leading questions, such as "What kind of shapes can a swimming pool be (2D or 3D)?" or "What does the problem want us to find when it says 'How much water can the pool hold'?"
- Students will work as pairs to solve the problem given.

Monitoring Student Responses

• Students will share their designs with the whole group at the end of the class.


Assessment List


		Points Earned	
Element	Point Value	Self	Teacher
Mathematical procedures are correct.	2		
The formulas used are clearly written.	2		
Mathematical calculations are correct.	2		
Work is shown neatly.	2		
The names of the shapes of the swimming pools are given.	2		
A sketch is provided.	2		
Correct dimensions are given.	2		
The amount of water the pool will hold is given in gallons.	2		
The amount of water the pool will hold is very close for both pools.	2		
Both partners worked together to solve this problem.	2		

#	Element	0	1	2
1	Mathematical procedures are correct.	No procedures are	Half of procedures	All procedures are
		correct	are correct	correct
2	The formulas used are clearly written	No formulas are	The formulas	The correct
		written or are not	written are not	formulas are written
		legible	correct	and legible
3	Mathematical calculations are correct	No mathematical	There are only a	All mathematical
		calculations are	few errors in the	calculations are
		correct	calculations	correct
4	All work is shown neatly	No work is shown	Only part of work is	All work is shown
		or is not legible	neatly shown	neatly and is legible
5	The names of the shapes of the pools	Both names are	Only one name is	Both names of the
	are given	wrong	correct	shapes are correct
6	A sketch is provided	Neither pool has a	Only one pool has a	Both pools have a
		sketch provided	sketch provided	sketch provided
7	Correct dimensions are given	No correct	Only one pool has	Both pools have all
		dimensions are	correct dimensions	correct dimensions
		given	given	given
8	The amount of water the pool will	Amounts for each	Amount for only	Amount for both
	hold is given in gallons	pool is not given in	one pool is given in	pools is given in
		gallons	gallons	gallons
9	The amount of water the pool will	Difference is greater	Difference is 10-20	Difference is less
	hold is very close for both pools	than 20 gallons	gallons	than 10 gallons
10	Partners worked collaboratively	Only one partner	NA	Both partners
		did all the work		worked together

Benchmark

Abby's pool will be an above ground cylindrical pool. The dimensions of Abby's pool will be diameter of 12 feet and a height of 3 feet. The amount of water that the pool will hold is based on the volume of the cylinder. Using the formula, $V = \pi r^2 h$, plug in Abby's radius and height $V = \pi(6^2)(3) = 108\pi \approx 339.29 ft^3$. Because the amount of water in pools is measured in gallons, I researched the conversion from cubic feet into gallons and found 1 cubic foot holds 7.48 gallons. I then used the proportion $\frac{339.29ft^3}{xgal} = \frac{1ft^3}{7.48\ gal}$ to find that the amount of water that Abby's pool will hold is 2537.89 gallons. Tom's pool will be an in-ground rectangular prism pool. To get Tom's pool to hold close to the same amount of water, I substituted Abby's volume into the formula V = lwh which gave me $339.29ft^3 = lwh$. I wanted the depth of the pool and width of the pool to be the same and the length of the pool to be double that measurement. Therefore, used w as my variable and made l=2w and h=w. Plugging those into my formula it looks like this: 339.29 = (2w)(w)(w) which simplifies to $339.29 = 2w^3$. When I solved this formula, the dimensions for Tom's pool are w = 5.54 feet, h = 5.54 feet, and I=11.08 feet. The volume of Tom's pool is 340.06ft³. Using the same ratio to convert into gallons, Tom's pool will hold 2543.65 gallons of water. The difference in the amount of water the pools will hold is 5.76 gallons.

